
S e©MR ISSN 1813-3304

СИБИРСКИЕ ЭЛЕКТРОННЫЕ
МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports
http://semr.math.nsc.ru

Том 6, стр. 522–525 (2009) УДК 514.8,515.12
Краткие сообщения MSC 28A80

ON THE LENGTH OF THE SET OF EXTREME POINTS FOR
SELF-SIMILAR SETS IN R2.

A.V. TETENOV

Abstract. We proof that the set of extreme points of the convex hull
of any self-similar set in R2 has zero 1-dimensional Lebesgue measure.
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1. Introduction

The interplay between the concepts of self-similarity and convexity is a promising
and still unexplored field in the theory of self-similar fractals. This sharply differs
from the situation in the theory of Kleinian groups, where the study of convex hulls
of the limit sets (which are self-conformal fractals) for a long time serves as one of
the main research tools in the theory.

The first attempt to study the convex hulls of self-similar sets was made in 1993
by P. Panzone [2] who found the sufficient conditions for the self-similar set in Rn

to have a finite polyhedral convex hull. In 1999, R. Strichartz and Y. Wang [3]
obtained necessary and sufficient conditions for the finiteness of the convex hull
for self-affine tiles in Rn. In 2006 M. Ferrari [1] considered the properties of the
boundary points of the convex hulls of self-similar sets in R3. The use of the convex
hulls and polyconvex prefractals was one of the main tools to investigate curvature
of self-similar and random self-similar sets in the recent works of S. Winter and
M. Zahle [7, 8].
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It was shown by the author in 2002 [4, 5] that for the self-similar sets in R2

satisfying the open convex set condition, the set of the extreme points for a self-
similar sets has zero Hausdorff dimension. In this paper we show that without any
assumptions for a self-similar set in the plane the set F of the extreme points of
it’s convex hull has zero 1-dimensional Hausdorff measure and therefore the set F
is a nowhere dense and totally disconnected compact subset of the boundary of the
convex hull of the self-similar set.

Definitions. Let S be a system {S1, ..., Sm} of injective contraction similarities
in R2 to itself and let K be it’s invariant set, that is a non-empty compact set K

satisfying K =
m⋃

i=1

Si(K). The set K is also called the attractor of the system S.
Denote by G the semigroup of similarities generated by the system S.

Consider the convex hull of the invariant set K, which we will denote by K̃. Let
F be the set of all extreme points of K̃. Since K̃ is the convex hull of F , the set F
is contained in K.

Since the set K̃ is a compact convex set in the plane, it’s boundary ∂K̃ is a
bounded closed rectifiable curve and it’s length is finite, therefore the one-dimensional
Hausdorff measure of the set F is also finite.

The aim of this article is to prove the following theorem.

Theorem 1. Let S be a system {S1, ..., Sm} of injective contraction similarities in
R2 with invariant set K and F be the set of extreme points of the convex hull K̃ of
K. Then the one-dimensional Hausdorff measure of F is zero.

2. The dynamics of the set of extreme points.

We recall some main properties of the set F of extreme points of a self-similar
set K, which were proved in [4, 5, 6].

1. Let z0 ∈ F be the extreme point of K̃. If for some Si ∈ S, z0 ∈ Si(K), then
z0 is the extreme point of Si(K). Therefore z1 = S−1

i (z0) is also the extreme point
of K̃. For each z0 ∈ F , there is at least one such z1, and we call it a predecessor
of z0. By inductive reasoning we obtain an infinite sequence of extreme points
{z0, z1, z2, ....}, where zi+1 is the predecessor of zi for each natural i.

2. An extreme point z0 is called a corner point if the angle β(z0) between the
right tangent ray to K̃ at the point z0 and the left one is less than π. It was proved
in [4, 6] that for any corner point z0, β(z1) < β(z0) and the number of different
points in the sequence of predecessors for the corner point z0 is finite. This implies
that each corner point is isolated in F and the set Fc of all corner points is at most
countable. The set G(Fc) of all images of corner points under the transformations
of the semigroup G is also countable.

3. An extreme point z is called an edge endpoint, if there is such extreme point
z′ that the whole line segment [z, z′] is contained in the boundary ∂K̃ of the convex
hull K̃. The segment [z, z′] will be called the edge of K̃. Two extreme points z, z′ ∈ F
are the endpoints of the same edge if and only if there is a normal vector to the
boundary ∂K̃ common for the points z and z′.

Since ∂K̃ has finite length, the set of all edges of K̃ is at most countable, and
so is the set Fe of all edge endpoints. Let z be an edge endpoint and for some i the
image Si(z) is an extreme point, then Si(z) is also the edge endpoint.
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The following steps would prepare us to the proof of the Theorem 1.
4. Define A = F \ (Fe ∪G(Fc)). Since the set (Fe ∪G(Fc)) is at most countable,

for each positive λ it’s Hausdorff measure Hλ(Fe ∪G(Fc)) is zero, so it’s enough to
prove the conclusion of the Theorem 1 for the set A. Since F is compact, the set A
is a Borel set.

Let Ak = Sk(A)\
k−1⋃
i=1

Si(A). The family of subsets Ak, k = 1, ..., m, is a partition

of the set A to the Borel sets. For any z ∈ Ak, the point S−1
k (z) ∈ A is it’s

predecessor, and the map Sk
−1 : Ak → A is an expanding similarity with the

ratio qi
−1, where qi = Lip(Si). Define the mapping ψ : A → A by the equality

ψ|Ak
= Sk

−1.
5. Each point z0 ∈ A is not a corner point, so there is an unique outward unit

normal vector ν(z0), defining the map ν : A → S1. Since A does not contain edge
endpoints, for any two different points z, z′ in A, ν(z) 6= ν(z′). Thus, the mapping
ν : A → S1 is injective.

Take a point z ∈ Ak. The angle between ν(z) and ν(Sk
−1(z)) is −αk, where αk

is the angle of rotation of the similarity Sk. Let rk be the rotation in the angle −αk.
Then the mapping ψ satisfies the equation ν · ψ|Ak

= rk · ν|Ak
for each k.

The main step in the proof of the Theorem 1 is the following

Lemma 2. Let A be a Borel set in Rd and let A =
n⋃

i=1

Ai be it’s partition into

disjoint Borel subsets. Let ψ : A → A be such a map that for each i, the restriction
ψi = ψ|Ai is an expanding similarity. Suppose there exist such an injective mapping
ν : A → S1 that for all i = 1, ..., m and all x ∈ Ai, ν · ψ(x) = ri · ν(x), where ri is
a rotation of S1 by angle αi.

Then for any λ > 0 the Hausdorff measure Hλ(F ) is either 0 or ∞.

Proof. Let qi = Lip(ψi)−1 and q = min(q1, ..., qm).
Set Ai1,..,ik+1 = ψ−1

i1,..,ik
(ψik+1(Ai1,..,ik

∩Aik+1)).
For each given k the family {Ai, i = i1, ..., ik ∈ Ik} is a partition of the set A

into disjoint Borel subsets.
Denote by A(k, m) the set of all unordered arrays of the length k consisting of

numbers {1, ..., m}. For each array j ∈ A(k, m) we denote by B(j ) the set of all
ordered arrays of length k, consisting of the elements of the array j .

Let W k
j =

⋃
i∈B(j )

Ai.

For each k the sets W k
j form a partition of the set A.

Each of the sets W k
j satisfies the condition:

for each x ∈ W k
j , π · ψk(x) = rα(j ) · π(x),

where rα(j ) — is a rotation by angle α(j ) = αi1 + ... + αik
, where the indices are

given by i1...ik = i ∈ B(j ). This last sum does not depend from the order in which
the indices ik are taken but only of the array j and therefore is the same for all
points x ∈ W k

j . So for each i, i′ ∈ B(j ), ψk(Ui) ∩ ψk(Ui′) = ∅.
Thus, the set ψk(W k

j ) ⊂ A is a finite union of disjoint subsets ψk(Ai), therefore
it’s Hausdorff λ−measure Hλ satisfies the inequality

Hλ(ψk(W k
j )) ≤ Hλ(F ).
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Since for any set Ai, i ∈ B(j ), the restriction of ψk to the set Ai is an expanding
similarity whose ratio does not exceed q−k,

Hλ(W k
j ) ≤ qkλHλ(ψk(W k

j )) ≤ qkλHλ(A).

From the other side, the sets W k
j partition of the set A, therefore

∑

j∈A(k,m)

Hλ(W k
j ) = Hλ(F ).

As a result one obtains the inequality

Hλ(F ) ≤ qkλHλ(F ) ·#A(k,m).

Since the set A(k, m) consists of
(m + k − 1)!
(k − 1)!m!

elements, and this number is no

greater than km, for any k we obtain

Hλ(A) ≤ kmqkλHλ(A).

This is possible only if Hλ(A) is either equal to 0 or is infinite. ¥
The proof of the Theorem 1 is finished by the observation that 1-dimensional

Hausdorff measure of ∂K̃, and therefore of the set A is finite. Then by the Lemma
2, H1(A) = 0. Therefore H1(F ) is also zero. ¥
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