СИБИРСКИЕ ЭЛЕКТРОННЫЕ МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports http://semr.math.nsc.ru

Том 6, стр. 510–513 (2009) Краткие сообщения УДК 514.8, 515.12 MSC 28A80

A SELF-SIMILAR CONTINUUM WHICH IS NOT THE ATTRACTOR OF ANY ZIPPER

A.V. TETENOV, O. PUREVDORJ

ABSTRACT. The article contains a construction of a self-similar dendrite which is not the attractor of any self-similar zipper.

Keywords: self-similar sets, fractal, self-similar dendrites, zippers.

1. INTRODUCTION

Let S be a system $\{S_1, ..., S_m\}$ of injective contraction mappings of a complete metric space (X, d) to itself and let K be it's *invariant set*, that is a non-empty compact set K satisfying $K = \bigcup_{i=1}^{m} S_i(K)$. The set K is also called the *attractor* of the system S. There is a natural construction allowing to obtain the systems S with an arcwise connected invariant set. This construction called a self-similar zipper goes back to the works of Thurston [5] and Astala [2] and was analyzed in detail by Aseev, Kravtchenko and Tetenov in [6]. Namely,

Definition 1. A system $S = \{S_1, ..., S_m\}$ of injective contraction maps of complete metric space X to itself is called a zipper with vertices $(z_0, ..., z_m)$ and signature $\vec{\varepsilon} = (\varepsilon_1, ..., \varepsilon_m) \in \{0, 1\}^m$ if for any j = 1, ..., m $S_j(z_0) = z_{j-1+\varepsilon_j}$ and $S_j(z_m) = z_{j-\varepsilon_j}$.

If the maps S_i are similarities (or affine maps) the zipper is called self-similar (correspondingly self-affine).

We shall call the points z_0 and z_m the initial and the final point of the zipper respectively.

Tetenov, A.V., Purevdorj, O, A self-similar continuum which is not the attractor of any zipper.

^{© 2009} Tetenov, A.V., Purevdorj, O.

The work is supported by RFFI (grant 09-01-90202).

Communicated by A.D. Mednykh November, 30, 2009, published December, 4, 2009.

The simplest example of a self-similar zipper may be obtained if we take a partition $P, 0 = x_0 < x_1 < \ldots < x_m = 1$ of the segment I = [0, 1] into m parts and put $T_i = x_{i-1+\varepsilon_i}(1-t) + x_{i-\varepsilon_i}t$. This zipper $\{T_1, \ldots, T_m\}$ will be denoted by $S_{P, \vec{\varepsilon}}$.

Theorem 2.(see [6]). For any zipper $S = \{S_1, ..., S_m\}$ with vertices $\{z_0, ..., z_m\}$ and signature $\vec{\varepsilon}$ in a complete metric space (X, d) and for any partition $0 = x_0 < x_1 < ... < x_m = 1$ of the segment I = [0, 1] into m parts there exists an unique map $\gamma : I \to K(S)$ such that for each i = 1, ..., m, $\gamma(x_i) = z_i$ and $S_i \cdot \gamma = \gamma \cdot T_i$ (where $T_i \in S_{P,\vec{\varepsilon}}$), the map γ being Hölder continuous.

The mapping γ in the Theorem 2 is called a *linear parametrization* of the zipper S. Thus, the attractor K of any zipper S is an arcwise connected set, whereas the linear parametrization γ may be viewed as a self-similar Peano curve, filling the continuum K.

Some Peano curves. The attractor K of a self-similar zipper S with vertices $(0,0), (1/4, \sqrt{3}/4), (3/4, \sqrt{3}/4), (1,0)$ and signature (1,0,1) is the Sierpinsky gasket.

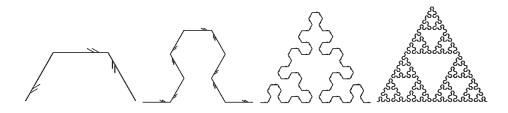


FIGURE 1. Iterations 1,2,4, ∞ for Serpinsky gasket.

A self-similar zipper with vertices (0,0), (0,1/2), (1/2,1/2), (1,1/2), (1,0) and signature (1,0,0,1) produces a self-similar Peano curve for the square $[0,1] \times [0,1]$

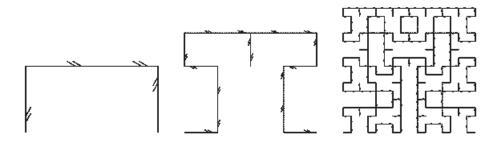


FIGURE 2. Iterations 1,2,4 for square-filling Peano curve.

2. The main example.

The following example shows the existence of a self-similar continuum which cannot be represented as the attractor of a self-similar zipper.

Let S be a system of contraction similarities g_k in \mathbb{R}^2 where $S_2(\vec{x}) = \vec{x}/2 + (2,0)$, and $S_k(\vec{x}) = \vec{x}/4 + \vec{a}_k$ where \vec{a}_k run through the set $\{ (0,0), (3,0), (1,2h), (3/2,3h) \}, h = \sqrt{3}/2$ for k = 1, 3, 4, 5. Let K be the invariant set of the system S and T – the Hutchinson operator of the system S defined by $T(A) = \bigcup_{j=1}^5 S_j(A)$.

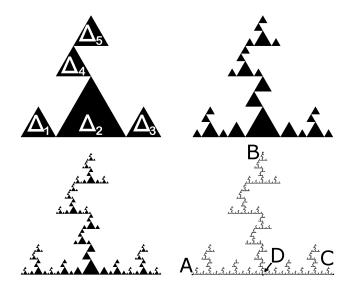


FIGURE 3. Iterations 1,2,4, ∞ for the example.

We shall use the following notation: By Δ we denote the triangle with vertices $A = (0,0), B = (2, 2\sqrt{3})$ and C = (4,0), that is the convex hull of the points A, B and C. The point (2,0) is denoted by D. Since for each $S_i, S_i(\Delta) \subset \Delta$, the invariant set K of the system S lies in Δ . For a multiindex $\mathbf{i} = i_1...i_k$ we denote $S_{\mathbf{i}} = S_{i_1}...S_{i_k}, \Delta_{\mathbf{i}} = S_{\mathbf{i}}(\Delta), K_{\mathbf{i}} = S_{\mathbf{i}}(K), A_{\mathbf{i}} = S_{\mathbf{i}}(A)$, etc.

1. The set K is a dendrite. The way the system S is defined (see [3, Thm.1.6.2]) guarantees the arcwise connectedness of K. Since for each n the set $T^n(\Delta)$ is simply-connected, the set K is a continuum, which contains no cycles, or a dendrite [4, Ch.6, §52]. Each point of K has the order 2 or 3. If a point x has the order 3, it is an image $S_{\mathbf{i}}(D)$ of the point D for some multiindex \mathbf{i} . Any path in K connecting a point $\xi \in J$ with a point $\eta \in \Delta_{\mathbf{i}}, \mathbf{i} = 4, 5, 24, 25, 224, 225, ...,$ passes through the point D.

2. Each non-degenerate segment J, contained in K is parallel to x axis and is contained in some maximal segment in K which has the length 4^{1-n} .

Consider a non-degenerate linear segment $J \subset K$. There is such multiindex **i**, that J meets the boundary of $S_{\mathbf{i}}(\Delta)$ in two different points which lie on different sides of $S_{\mathbf{i}}(\Delta)$ and do not lie in the same subcopy of $K_{\mathbf{i}}$. Then $J' = g_{\mathbf{i}}^{-1}(J \cap K_{\mathbf{i}})$ is a segment in K with endpoints lying on different sides of D which is not contained in neither of subcopies K_1, \ldots, K_5 of K. Then J' = [0, 4]. Since a part of J is a base of some triangle $S_{\mathbf{i}}(\Delta)$, the length of the maximal segment in K containing J is 4^{1-n} where $n \leq |\mathbf{i}|$.

3. Any injective affine mapping f of K to itself is one of the similarities $S_{\mathbf{i}} = S_{i_1} \cdot \ldots \cdot S_{i_k}$. Since f maps [0,4] to some $J \subset S_{\mathbf{i}}([0,4])$ for some \mathbf{i} , it is of the form $f(x,y) = (ax + b_1y + c_1, b_2y + c_2)$, with positive b_2 . Choosing appropriate composition $S_{\mathbf{i}}^{-1} \cdot f \cdot S_{\mathbf{j}}(K)$ we obtain a map of K to itself sending [0,4] to some subset of [0,4]. Therefore we may suppose that $f(x,y) = (ax + b_1y + c_1, b_2y)$, and that the image $f(\Delta)$ is contained in Δ and is not contained in any $\Delta_i, i = 1, ..., 5$.

If $f(B) \in \Delta_i$, i = 4, 5, 24, 25, then f(D) = D and $c_1 = 2 - a$.

If $f(B) \in \Delta_i$, i = 4, 5, then $1/2 \leq b_2 \leq 1$. In this case y-coordinates of the points $f(B_1)$, $f(B_3)$ are greater than $\sqrt{3}/4$, so they are contained in Δ_1 and Δ_3 , therefore the map f either keeps the points D_1, D_3 invariant, or transposes them. In each case |a| = 1 and $f(\{A, C\}) = \{A, C\}$. If in this case $f(B) \neq B$, then $f(A_4)$ cannot be contained in $T(\Delta)$. The same argument shows that if f(B) = B, then $f(A) \neq C$. Therefore f = Id.

If $f(B) \in \Delta_i$, i = 24, 25, and a > 1/2 then the points $f(B_1)$, $f(B_3)$ are again contained in Δ_1 and Δ_3 , therefore the map f either keeps the points D_1, D_3 invariant, or transposes them, so |a| = 1 and $f(\{A, C\}) = \{A, C\}$. Considering the intersections of the line segments [A, f(B)] and [f(B), C] with the boundary of $T(\Delta)$ and $T^2(\Delta)$ we see that either $f(A_4)$ or $f(C_5)$ are not contained in $T^2(\Delta)$, which is impossible.

Therefore, either $a \leq 1/2$ or f = Id. The first means that $f(\Delta) \subset \Delta_2$, which contradicts the original assumption, so f = Id.

4. The set K cannot be an attractor of a zipper. Let $\Sigma = \{\varphi_1, ..., \varphi_m\}$ be a zipper whose invariant set is K. Let x_0, x_1 be the initial and final points of the zipper Σ . Let γ be a path in K connecting x_0 and x_1 . Since for every i = 1, ..., m the map φ_i is equal to some S_j , the sets $\varphi_i(K)$ are the subcopies of K, therefore for each i at least one the images $\varphi_i(x_0), \varphi_i(x_1)$ is contained in the intersection of $\varphi_i(K)$ with adjacent copies of K. Consider the path $\tilde{\gamma} = T_{\Sigma}(\gamma) = \bigcup_{i=1}^{m} \varphi_i(\gamma)$. It starts from the point x_0 , ends at x_1 and passes through all copies K_j of K. Each of the points $C_1 = A_2, C_2 = A_3, B_2 = C_4$ and $B_4 = A_5$ splits K to two components, therefore is contained in $\tilde{\gamma}$ and is a common point for the copies $\varphi_i(\gamma), \varphi_{i+1}(\gamma)$ for some i. Therefore one of the points x_0, x_1 must be A, one of the points x_0, x_1 must be B, and one of the points x_0, x_1 must be C, which is impossible.

References

- Aseev V.V., On the regularity of self-similar zippers, Materials of the 6-th Russian-Korean Int. Symp. on Science and Technology, KORUS-2002 (June 24-30, 2002. Novosibirsk State Techn. Univ., Russia", Part 3, (Abstracts), 167.
- [2] Astala K., Self-similar zippers, Holomorph.funct. and Moduli: Proc.Workshop, March 13-19, 1986, New York, 1 (1988), 61–73.
- [3] Kigami J., Analysis on fractals, Cambridge University Press, 2001.
- [4] Kuratowski K., Topology, 2 , Academic Press, 1968.
- [5] Thurston W.P., Zippers and univalent functions, in: The Bieberbach Conjecture, Math. Surveys, No. 21, Am. Math. Soc., Providence, R.I. (1986), 185–197.
- [6] Aseev V.V., Kravtchenko A.S., Tetenov A.V., On self-similar curves in the plane, Siberian math J., 44: 3 (2003), 481–492.
- [7] Hutchinson J., Fractals and self-similarity, Indiana Univ. Math. J., 30: 5 (1981), 713-747.

ANDREY V. TETENOV, GORNO-ALTAISK STATE UNIVERSITY, LENKIN STR.,1, 649000, GORNO-ALTAISK, RUSSIA *E-mail address:* atet@mail.ru

Oyunaa Purevdorj, Khovd State University, Khovd, Mongolia *E-mail address*: oyunaap@yahoo.com