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COMPLETENESS OF THE SPACE OF SEPARABLE MEASURES

IN THE KANTOROVICH–RUBINSHTEĬN METRIC

A. S. Kravchenko UDC 517.54

Abstract: We consider the spaceM(X) of separable measures on the Borel σ-algebraB(X) of a metric
space X. The space M(X) is furnished with the Kantorovich–Rubinshtĕın metric known also as the
“Hutchinson distance” (see [1]). We prove that M(X) is complete if and only if X is complete. We
consider applications of this theorem in the theory of selfsimilar fractals.
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1. Introduction. In [2], defining the notion of an invariant measure for a finite system of contraction
similarities, Hutchinson considered a metric space (X, ρ) and the spaceMloc(X) of measures ν on X with
bounded support normed by the condition ν(X) = 1 and used the following metric onMloc(X) [2, 4.3(1)]:

H(ν, μ) = sup

∣
∣
∣
∣

∫

X

f dν −
∫

X

f dμ

∣
∣
∣
∣
, (1)

where the supremum is taken over all functions f in the space

lip1(X) = {f : X → R : |f(x)− f(y)| ≤ ρ(x, y) for all x, y ∈ X}.
This metric, called the “Hutchinson distance” in [1], was introduced in the 1950s in the articles by
L. V. Kantorovich and G. Sh. Rubinshtĕın (see [3, Chapter 4, § 4]).
The proof of the theorem on existence of an invariant measure on a selfsimilar set in [2, 4.4(1)] relies

upon the Banach Fixed Point Theorem; however, the proof of completeness of Mloc(X) is absent. In
the case of a compact set X the space Mloc(X) is compact (see [3, Chapter 8, § 4]) and consequently
complete. However, in general we have the following

Assertion 1.1. If X is unbounded then Mloc(X) is not complete.

Indeed, choosing a sequence xk ∈ X of points such that ρ(x0, xk) ≤ k and ρ(x0, xk)→∞ as k →∞
and using the Dirac measure δx (see Section 2), we can define the sequence νn = 2

−nδx0 +
∑n
k=1 2

−kδxk
which is Cauchy in Mloc(X) but has no limit in this space.
The gap in the proof of Hutchinson’s theorem was observed in [1] wherein a new proof of this theorem

was given in the case X = Rn which uses the space M(X) furnished with the metric (1) of measures ν
satisfying the conditions ν(X) = 1 and

∫

X ρ(x0, x) dν <∞ for some point x0 ∈ X. Also, completeness of
M(X) was established in the particular caseX = Rn. In Section 4 we prove the main result (Theorem 4.2)
on equivalence of completeness ofM(X) and that of X in the general case. An application of this theorem
to selfsimilar fractals (Section 5) settles completely the question of correctness of Hutchinson’s theorem
in the general case and also extends this theorem to the case of countable systems of contractions. This
makes it possible to consider an attractor of a (countable) system of contraction similarities in a Banach
space as the support of an invariant measure without the a priori requirement of compactness.

2. Basic notions. Let (X, ρ) be a metric space and let Cb(X) be the space of all bounded continuous
functions f : X → R with the norm ‖f‖∞ = supx∈X |f(x)|. The number

Lip f = sup

{∣
∣
∣
∣

f(x)− f(y)
ρ(x, y)

∣
∣
∣
∣
: x �= y, x, y ∈ X

}
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is called the Lipschitz constant of f ; if it is finite then f is called a Lipschitz function. Denote the
spaces of all real Lipschitz functions, bounded Lipschitz functions, and functions with the Lipschitz
constant at most α on X by lip(X), lip◦(X), and lipα(X). Introduce the following notations: diam(A) =
sup{ρ(x, y) : x, y ∈ A} ∈ [0,+∞] is the diameter of a set A ⊂ X and ρ(x,A) = infy∈A ρ(x, y) is the
distance from a point x ∈ X to a set A. The support of a real function f : X → [0,+∞) is the set
spt f = {x ∈ X : f(x) > 0}.
We write αn ↓ α0 (αn ↑ α0) for a monotonically decreasing (increasing) numeric sequence {αn}

convergent to α0. Similarly, we write fn ↓ f0 (fn ↑ f0) on X if the sequence {fn} of real functions on X
decreases (increases) and converges pointwise to f0 everywhere on X.
By a measure ν on X we mean a nonnegative countably additive real set function given on the

σ-algebra B(X) of all Borel subsets of X which satisfies the equality ν(∅) = 0. The measure δx(A) =
{1 for x ∈ A; 0 for x /∈ A} is called the Dirac measure at x ∈ X (see [4, 10.9.4(1)]). A measure μ on X
satisfying the condition μ(X) < +∞ is said to be finite. The support of a measure μ is sptμ = X \∪{A ⊂
X : A is open and μ(A) = 0}. A set A ⊂ X is called separable if it is contained in the closure of an at
most countable subset. In line with [5, Chapter 1, § 1], we say that a measure μ is separable if there is
a separable Borel set A ⊂ X such that μ(X \ A) = 0. It is well known [6, 2.2.16] that the support of
a finite measure is always separable and therefore for finite measures the condition μ(X \ sptμ) = 0 is
equivalent to the separability of μ.
A family Π of finite measures is called dense (see [5, Chapter 1, § 1]) if, for every ε > 0, there

is a compact set K such that ν(X \ K) < ε for all measures ν ∈ Π; respectively, a finite measure is
called dense if so is the family constituted by this single measure. A finite dense measure is determined
uniquely by the values of the integral at f ∈ lip◦(X) (see [5, Chapter 1, § 1, Theorem 1.3]). Observe that,
in a complete metric space X, the density and separability properties of a measure are equivalent (see [5,
Supplement III]). We only consider separable measures, omitting the so-called measure problem (see [5,
Supplement III] or [6, 2.1.6]). Each finite measure on X generates a linear functional μ(f) =

∫

X f dμ
on the space E(X,μ) of all μ-summable real functions. In line with [1, p. 159], given a metric space X
we consider the space M(X) of all separable measures μ such that μ(X) = 1 and μ(f) < +∞ for every
function f ∈ lip(X). Note that in general Mloc(X) ⊂ M (X), where M (X) is the space of measures
without the separability requirement as introduced in [1, p. 160]. Moreover, M(X) ⊂M (X). With each
point a ∈ X we associate the function φa(x) = ρ(a, x) in lip(X).
Assertion 2.1. A separable measure μ on (X, ρ), satisfying the condition μ(X) = 1, belongs

to M(X) if and only if there is a point a ∈ X such that μ(φa) < +∞.
Proof. If μ ∈ M(X) then φa ∈ lip(X) for every point a ∈ X and consequently μ(φa) < +∞. If

there is a point a ∈ X such that μ(φa) < +∞ then the estimate
f(x) ≤ f(a) + (Lip f) · ρ(a, x) = f(a) + (Lip f) · φa(x)

holds for every function f ∈ lip(X), which yields the sought estimate for the integral: μ(f) ≤ f(a) +
(Lip f) · μ(φa) < +∞. �
3. Metrization of the space of measures. The distance H(μ, ν) between the measures μ and ν is

defined by (1), where the supremum is taken over all functions f ∈ lip1(X), and is the restriction toM(X)
of the metric H(μ, ν) considered in [1] on the formally broader spaceM (X). Note that the completeness
property of X was not used in checking the axioms of a metric for H(μ, ν) in [1, Theorem 1, p. 161].
We say that a sequence μk of finite measures converges weakly to a finite measure μ if μk(f) → μ(f)
as k → ∞ for every function f ∈ Cb(X); in this case we write μk ⇒ μ. A family of sets of the form
{μ ∈ M(X) : |μ(fj) − ν(fj)| < ε; j = 1, . . . , k} for arbitrary ε > 0 and arbitrary finite collections
f1, . . . , fk of functions in Cb(X) determines a system of basic neighborhoods for each point ν ∈ M(X)
which generates the topology of weak convergence which we denote by W .
A sequence {νn}∞n=1 is called weakly Cauchy if νn(f) is Cauchy for every function f ∈ Cb(X). A set

Π of measures is weakly complete if every weakly Cauchy sequence {νn} in this set converges weakly to
some measure in Π.
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Theorem 3.1. For every metric space X, the topology T on M(X) generated by H(μ, ν) coincides
with the topology W of weak convergence if and only if diamX <∞. Moreover, if diam(X) =∞ then T
is strictly finer than W .

Before proving this theorem, we give several auxiliary assertions:

Lemma 3.2. For every function f ∈ Cb(X), there is a sequence {ϕn} of functions in lip◦(X) such
that ϕn ↓ f on X.
Proof. Let f ∈ Cb(X) and ||f ||∞ = m < +∞. For n = 1, 2, . . . each of the continuous functions

ϕn(x) = sup{f(t)− nρ(x, t) : t ∈ X}
is bounded on X, since −m ≤ f(x) ≤ ϕn(x) ≤ sup{f(t) : t ∈ X} = m. It follows from the inequality
(f(t) − n · ρ(x1, t)) − n · ρ(x1, x2) ≤ f(t) − n · ρ(x2, t) ≤ ϕn(x2) that ϕn(x1) − ϕn(x2) ≤ n · ρ(x1, x2)
for arbitrary x1, x2 ∈ X. Consequently, Lipϕn ≤ n and ϕn ∈ lip◦(X). The inequality ϕn+1(x) ≤
ϕn(x) is immediate from the definition of the functions ϕn(x). For every fixed x ∈ X and an arbitrary
ε > 0, there is δ = δ(ε) > 0 such that |f(x) − f(t)| < ε whenever ρ(x, t) < δ. Since the inequality
(f(t)− f(x))− n · ρ(x, t) ≤ 0 holds for all n > 2m/δ and ρ(x, t) ≥ δ, the estimate

0 ≤ ϕn(x)− f(x) = sup{(f(t)− f(x))− n · ρ(x, t) : ρ(x, t) < δ} ≤ ε
is valid for all sufficiently large n. Consequently, f(x) = limn→∞ ϕn(x). �
Remark. A similar assertion for semicontinuous functions on bounded sets in Rn was proven by

Hausdorff (1919); see [7, Theorem II.5].
Let V be a vector lattice. A linear functional F : V → R is sequentially o-continuous or sequentially

order continuous if F (un) → 0 as n → ∞ for every monotonically decreasing sequence un of elements
of V such that inf un = 0. An example of a sequentially o-continuous functional is the integral with
respect to an arbitrary finite measure μ on X.

Lemma 3.3. Suppose that V is a vector lattice and V0 is a subset of V such that, for every element
v ∈ V , there is a decreasing sequence uk ∈ V0, k = 1, 2, . . . , such that inf uk = v. If a sequence
Fn : V → R, n = 0, 1, . . . , of sequentially o-continuous positive linear functionals converges pointwise
to F0 on V0 then the sequence {Fn} converges pointwise to F0 on the whole V .
Proof. Choose v ∈ V and ε > 0. By condition, there is a decreasing sequence uk ∈ V0 for which

inf uk = v. Choose k = k(ε) such that |F (uk)−F (v)| < ε and N = N(ε) such that |Fn(uk)−F (uk)| < ε
for n > N . Then

Fn(v) ≤ Fn(uk) < F (uk) + ε < F (v) + 2ε.

Passing to lim sup as n → ∞, we obtain lim supFn(v) ≤ F (v) + 2ε. In view of the arbitrariness of ε,
we have lim supFn(v) ≤ F (v). Applying similar arguments to (−v), we find that lim inf Fn(v) ≥ F (v),
whence limFn(v) = F (v). �
Corollary 3.4. Suppose that a sequence {μn} of finite measures and a finite measure μ are such

that μn(f)→ μ(f) for every function f ∈ lip◦(X). Then μn ⇒ μ.

Proof. Put V = Cb(X) and V0 = lip
◦(X) ⊂ V . Then the result of the corollary is immediate from

Lemmas 3.2 and 3.3. �
Corollary 3.5. The topology T on M(X) generated by H is not coarser than W .

Proof. It follows from Corollary 3.4 that every sequence in M(X) convergent in the metric H
converges in the weak topology. �
Lemma 3.6. If X is a bounded space then every weakly convergent sequence in M(X) converges

in the metric H.

Proof. Assume that X is bounded. Consider an arbitrary weakly convergent sequence νn ⇒ ν0 of
separable measures (n = 1, 2, . . . ).
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Let X̃ be the completion of X. The family of sets D = {A ⊂ X̃ : A ∩X ∈ B(X)} is a σ-algebra.
This is immediate from the fact that the family B(X) of Borel sets is a σ-algebra. If a set V is open in X̃

then V ∩X is open in X; consequently, V ∩X ∈ B(X) and V ∈ D . Since B(X̃) is the minimal σ-algebra

containing all open sets in X̃, we have B(X̃) ⊂ D or, in other words, {A ∩ X : A ∈ B(X̃)} ⊆ B(X).

Thus, each separable measure νn : B(X)→ [0,+∞) generates a separable measure ν̃n : B(X̃)→ [0,+∞)
defined by the formula ν̃n(A) = νn(A∩X) (all necessary properties of ν̃n are immediate from the similar
properties of the measure ν).

For every function f ∈ Cb(X̃) we have
ν̃n(f) = νn(f |X)→ ν0(f |X) = ν̃0(f);

i.e., ν̃n ⇒ ν̃0. Consequently, the family Π = {ν̃n}∞n=0 is compact in the topology of weak convergence.
Fix ε > 0. By the converse Prokhorov theorem [5, Chapter 1, § 6, Theorem 6.2], the family Π is dense;
i.e., there is a compact set K ⊂ X̃ such that ν̃n(X̃ \K) < ε for n = 0, 1, . . . .

Since the set X is everywhere dense in X̃, the collection of balls B(x, ε) of diameter ε centered at

x ∈ X covers X̃ and in particular the compact set K. Choose a finite subcovering of K: ⋃mi=1B(xi, ε) ⊃
K, and denote A = {xi}mi=1. Since the set A is finite, the set of functions

F = {ϕ ∈ lip1(A) : ϕ(x1) = 0}
is homeomorphic to a closed bounded subset of Rm and consequently F is compact in the uniform norm
‖ϕ‖∞ = max |ϕ|. Choose a finite ε-net ϕk ∈ F for F . Consider the collection of functions ψk : X → R:

ψk(x) = min{ϕk(xi) + ρ(x, xi) | i = 1, . . . ,m}.
Each of these functions is an extension of ϕk to the whole space X, ψk|A ≡ ϕk; moreover, ψk ∈ lip1(X)
by construction.
Choose a number n0 so large that |νn(ψk)− ν0(ψk)| < ε for all k and all n ≥ n0. Let f ∈ lip1(X) be

an arbitrary Lipschitz function. Then the function g(x) = f(x)− f(x1) is such that g|A ∈ F and hence
there is k with the property max{|g(xi)− ϕk(xi)| : i = 1, . . . ,m} < ε. For every point x ∈ K ∩X, there
is a point xi such that ρ(xi, x) ≤ ε and then

|g(x)− ψk(x)| ≤ |g(x)− g(xi)|+ |g(xi)− ψk(xi)|+ |ψk(xi)− ψk(x)| < 3ε.
Thus, max{|g(x)− ψk(x)| : x ∈ K ∩X} ≤ 3ε. Gathering the above estimates, for n ≥ n0 we obtain

|νn(f)− ν0(f)| = |νn(g)− ν0(g)| ≤
∣
∣
∣
∣

∫

X∩K
g d(νn − ν0)

∣
∣
∣
∣
+

∣
∣
∣
∣

∫

X\K
g d(νn − ν0)

∣
∣
∣
∣

≤ |νn(ψk)− ν0(ψk)|+ 2 max
x∈X∩K

|g(x)− ψk(x)|+max |g| · |νn(X \K) + ν0(X \K)|
≤ ε+ 6ε+ 2ε ·max |g| ≤ ε · (7 + 2diamX).

Passing to the least upper bound over the functions f ∈ lip1(X), we arrive at the estimate
H(νn, ν0) ≤ ε · (7 + 2diamX).

In view of the arbitrariness of ε, this proves convergence of {νn} to ν0 in the metric H. �
Lemma 3.7. If X is an unbounded space then the topology of the metric H on M(X) is not

equivalent to (and is strictly finer than) the weak topology.

Proof. Assume thatX is unbounded. Choose a sequence {xn}∞n=0 of points such that ρ(x0, xn) ≥ n2.
Let νn =

1
n · δxn +(1− 1n) · δx0 . Then νn ⇒ δx0 . Indeed, for every bounded continuous function f we have

|δx0(f)− νn(f)| =
1

n
· |f(x0)− f(xn)| ≤ 1

n
· 2max |f | −→

n→∞ 0.
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On the other hand,

H(δx0 , νn) = νn(φx0) =
1

n
· ρ(x0, xn) ≥ n,

and so convergence in the metric H is absent. �
Theorem 3.1 is a straightforward consequence of 3.5–3.7.

4. The basic theorems on completeness of the space of measures. In this section we prove
the following two theorems:

Theorem 4.1. If X is a complete space then the space of finite separable measures on X is weakly
complete.

Theorem 4.2. The space M(X) is complete in the metric H if and only if X is complete.

We start with technical lemmas. The following lemma appears in [5, Chapter 1, § 6] as a part of the
proof of the converse assertion of the Prokhorov theorem.

Lemma 4.3. In a complete space, a family Π of measures is dense if and only if, for arbitrary
ε > 0 and δ > 0, there is a finite collection {Bi} of balls of radius ε such that ν(X \ ∪Bi) < δ for all
measures ν ∈ Π.
The proof of necessity is immediate from the definition of a dense family and total boundedness of

a compact set. Conversely, let Uk =
⋃

iBik be the union of a finite collection of balls of radius
1
2k
and

let ν(X \ Uk) < δ
2k
. Then the intersection of the sets Uk is totally bounded by construction. Hence, by

Hausdorff’s theorem [4, 4.6.7], its closure K = cl
⋂

k Uk is compact and moreover ν(X \K) < δ. �
Corollary 4.4. If a sequence {νk} of separable measures is not dense then there exist ε > 0 and

δ > 0 such that, for every finite collection {Bi} of balls of radius ε and every n0 ≥ 0, there is a natural
number n > n0 such that νn(X \ ∪Bi) ≥ δ.
Proof. Assume that a sequence Π = {νk}∞k=1 of separable measures is not dense and take n0 > 0.

It follows from the definition of a dense family of measures that the union of finitely many dense families
is dense. Consequently, the family Π′ = {νk : k ≤ n0} is dense, while the family Π′′ = {νk : k > n0}
is not dense in view of Π = Π′ ∪ Π′′. It follows from Lemma 4.3 that there exist ε > 0 and δ > 0 such
that, for every finite collection {Bi} of balls of radius ε, there is a measure νn ∈ Π′′ (n > n0) such that
νn(X \ ∪Bi) ≥ δ. �
Lemma 4.5. Let X be a complete space. If a sequence {νn} of finite separable measures is such

that, for every function f ∈ lip◦(X), νn(f) is Cauchy then {νn} is a dense family. As a consequence,
every weakly Cauchy sequence of separable measures is a dense family.

Proof. Assume that the sequence {νn} is not dense. Show that there is a function f ∈ lip◦(X)
such that νn(f) is not Cauchy. Denote by B(x, r) = {t ∈ X : ρ(t, x) ≤ r} the closed ball of radius
r > 0 centered at x ∈ X. Given a finite set A and r > 0, we denote Ar = ⋃x∈AB(x, r). It follows from
Corollary 4.4 that there exist ε > 0 and δ > 0 such that, for every finite set A ⊂ X and every n0 ≥ 0,
there is a natural number n > n0 such that νn(X \Aε) ≥ δ.
Construct a sequence of natural numbers 1 ≤ n1 < n2 < . . . and sequences {Ak} and {Dk} of finite

subsets of X such that the following properties are satisfied:

(i) Ai−1 ⊂ Ai for all i > 1;
(ii) Di ⊂ Aj for i ≤ j;
(iii) D

ε/2
i ∩Aε/2j = ∅ for i > j;

(iv) νnk
(

D
ε/4
k

)

> δ/2;

(v) νnk
(

X \Aε/2k
)

< δ/32.

We proceed by the following algorithm.
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Step 1. By the choice of ε and δ, there is a number n1 such that νn1(X) ≥ δ. By separability of

νn1 , there exists a finite set A1 such that νn1
(

X \ Aε/41
)

< δ/32. Property (v) for k = 1 follows from

the embedding A
ε/4
1 ⊂ A

ε/2
1 and monotonicity of the measure νn1 . Put D1 = A1. Then (ii) is valid for

i = j = 1 and νn1
(

D
ε/4
1

)

= νn1(X)− νn1
(

X \Aε/41
)

> δ− δ/32 > δ/2 which is nothing but (iv) for k = 1.

Step k for k > 1. Assume there are numbers {ni} and sets Ai and Di, i = 1, . . . , k − 1, with
properties (i)–(v). It follows from the choice of ε and δ that there is a number nk > nk−1 such that
νnk
(

X \ Aεk−1
) ≥ δ. Since νnk is separable then there is a finite set Dk ⊂ X \ Aεk−1 with property (iv).

Since Dk ∩ Aεk−1 = ∅, we have Dε/2k ∩ Aε/2k−1 = ∅. From (i) we deduce Aj ⊂ Ak−1 for j < k − 1, which
implies (iii) in the case i = k. By separability of νnk , there is a finite set Fk such that νnk

(

X\F ε/2k
)

< δ/32.
Put Ak = Fk ∪Ak−1 ∪Dk, whence we obtain (i) in the case i = k, (ii) in the case j = k, and (v).
Take the following sequences {ϕk} and {fk} of real functions:

ϕk(x) = max(1− ρ(x,Dk) · 2/ε, 0), where k = 1, 2, . . . ,

f1 = 0, fk+1 =

{
fk if |νnk(fk)− νnk+1(fk)| > δ

8 ,

fk + ϕk+1 otherwise.

It follows from (i)–(iii) that D
ε/2
i ∩ Dε/2j = ∅ for i �= j. Thus, the supports of the functions

sptϕk = D
ε/2
k , k ∈ N, are pairwise disjoint. For every k ∈ N and x ∈ Dε/4k we have ϕk(x) ≥ 1/2. Hence,

νnk(ϕk) ≥ 1
2νnk
(

D
ε/4
k

)

. Applying (iv), we obtain νnk(ϕk) >
δ
4 which implies that the estimate

|νnk(fk)− νnk+1(fk+1)| > δ/8

holds for every k ∈ N. Define f(x) = supk fk(x). Since 0 ≤ ϕk(x) ≤ 1, Lipϕk ≤ 2/ε, and the supports of
the functions ϕk are disjoint, we have 0 ≤ fk ≤ 1 and Lip fk ≤ 2/ε for all k ∈ N; moreover, 0 ≤ f ≤ 1
and Lip f ≤ 2/ε. Thus, f ∈ lip◦(X). For every natural k

0 ≤ (f − fk) ≤
∞∑

i=k+1

ϕi ≤ 1.

Consequently,

spt(f − fk) ⊂
∞⋃

i=k+1

D
ε/2
i .

By (iii),
⋃∞
i=k+1D

ε/2
i ⊂ X \Aε/2k and

|νnk(f − fk)| ≤ νnk
(

X \Aε/2k
)

< ε/32.

Applying the triangle inequality, we obtain

|νnk(f)− νnk+1(f)| ≥ |νnk(fk)− νnk+1(fk+1)|
−|νnk(f)− νnk(fk)| − |νnk+1(f)− νnk+1(fk+1)| >

δ

8
− 2 δ
32
=

δ

16
.

Hence, νn(f) is not Cauchy. �
Lemma 4.6. Suppose that X is a complete space and a sequence {νn} of finite separable measures is

such that, for every function f ∈ lip◦(X), the numeric sequence νn(f) is Cauchy. Then there is a unique
separable measure μ which the sequence {νn} converges weakly to.
Proof. Define a nonnegative linear functional μ by the formula μ(f) = limn→∞ νn(f) for all func-

tions f ∈ lip◦(X). Consider a monotonically vanishing sequence ϕk ∈ lip◦(X). Fix ε > 0. By Lemma 4.5,
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the sequence νn constitutes a dense family; hence, there is a compact set K such that νn(X \K) < ε.
The convergent sequence ϕk converges uniformly on a compact set; consequently, there is a number k0
so large that max{ϕk(x) | x ∈ K} < ε for k > k0 and

νn(ϕk) =

∫

K

ϕk dνn +

∫

X\K
ϕ1 dνn ≤ ε(νn(1) + maxϕ1),

μ(ϕk) = lim
n→∞ νn(ϕk) ≤ ε(μ(1) + maxϕ1)

for all k > k0. Thus, μ(ϕk) ↓ 0 for an arbitrary sequence ϕk ↓ 0. By Daniel’s theorem [8, II.7.1], the
functional μ is a measure on X.
To show the separability of μ, it suffices to consider a separable set S = cl(

⋃
spt νn) and demonstrate

that μ(S) = μ(X). Using a sequence of the Lipschitz functions fk(x) = max(1 − k · ρ(S, x), 0) which is
monotonically convergent everywhere on S to the characteristic function χS of S, we obtain

μ(S) = μ(χS) = lim
k→∞

μ(fk) = lim
k→∞

lim
n→∞ νn(fk) = μ(1) = μ(X).

Applying Corollary 3.4, we conclude that the sequence {νn} converges weakly to a separable mea-
sure μ. �
Proof of Theorem 4.1. Consider an arbitrary weakly Cauchy sequence {νn} of separable mea-

sures, i.e., such that for every function f ∈ Cb(X) the numeric sequence {νn(f)} is Cauchy. Since
lip◦(X) ⊂ Cb(X), by Lemma 4.6, the sequence {νn} converges weakly to some separable measure. Hence,
the space of separable measures is weakly complete. �
Proof of Theorem 4.2. Assume that a sequence {νn} of measures in M(X) is Cauchy in the

metric H. It follows from the definition of H that νn(f) is Cauchy for every function f ∈ lip(X).
By Lemma 4.6, there is a separable measure μ such that νn ⇒ μ. Show that H(νn, μ) → 0. Fix ε > 0.
Since {νn} is Cauchy, there is a number n such that H(νn, νm) < ε for all m > n. If f ∈ lip1(X) is
some nonnegative Lipschitz function then the sequence of the bounded functions fk(x) = min{f(x), k}
is monotonically convergent: fk ↑ f on X. By Lebesgue’s theorem [9, Chapter 1, § 12, (12.6), p. 48],
νn(fk) ↑ νn(f) and μ(fk) ↑ μ(f); consequently, there is a number k so large that |νn(f)− νn(fk)| < ε and
|μ(f) − μ(fk)| < ε. It follows from weak convergence that limm→∞ νm(fk) = μ(fk). By the choice of n,
we have

|νn(fk)− μ(fk)| = lim
m→∞ |νn(fk)− νm(fk)| ≤ ε.

Eventually, we obtain

|νn(f)− μ(f)| ≤ |νn(f)− νn(fk)|+ |νn(fk)− μ(fk)|+ |μ(fk)− μ(f)| < 3ε.
Every Lipschitz function is representable as the difference of two nonnegative functions: f = f+ − f−;
consequently, μ(f) = limn→∞ νn(f) for all f ∈ lip1(X). Hence, first, μ ∈ M(X), since μ(φx0) =
limn→∞ νn(φx0) < ∞, and second, limn→∞H(νn, μ) = 0. This proves completeness of M(X). The first
part of the theorem is proven.
Assume now thatM(X) is complete and show that so is X. Consider some Cauchy sequence {xn}∞n=1

in X. Since H(δx, δy) = ρ(x, y) for all x, y ∈ X, the sequence {δxn} of Dirac measures is Cauchy and,
by completeness of M(X), converges in the metric H to some measure ν. From separability of ν we find
that the support of ν is nonempty. Let x0 ∈ spt ν. Choose an arbitrary ε > 0. For the Lipschitz function
fε(x) = max(0, 1 − 1

ερ(x0, x)) we have limn→∞ δxn(f) = ν(f) > 0. Therefore, there is N such that
δxn(f) = f(xn) > 0 for n > N ; hence, ρ(x0, xn) < ε. Consequently, xn → x0 as n → ∞. Completeness
of X is proven. �
5. Applications of the completeness theorem. As mentioned in the introduction, Theorem 4.2

has applications in the theory of selfsimilar sets. For example, the proof of Hutchinson’s theorem [2,
4.4(1)] on existence of a unique invariant measure on an invariant set is incorrect without Theorem 4.2.
Since regular Borel outer measures are used in [2], we should reformulate Theorem 4.2 in terms of outer
measures.
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An outer measure on X is a function μ : 2X → [0,∞] such that μ(∅) = 0 and μ(⋃∞i=1Ei) ≤∑∞
i=1 μ(Ei) for Ei ⊂ X. A set A is called μ-measurable if μ(T ) = μ(T ∩ A) + μ(T \ A) for all T ⊂ X.

We say that an outer measure μ is regular Borel if all Borel sets are μ-measurable and, for every A ⊂ X,
there is a Borel set B ⊃ A such that μ(A) = μ(B). We denote by M∗(X) the space of all separable outer
measures on X satisfying μ(X) = 1 and

∫

X φx0 dμ < ∞ for some x0 ∈ X. The metric H on M∗(X) is
also defined by (1).

Theorem 5.1. The space M∗(X) is complete in the metric H if and only if so is X.
The proof is immediate from Theorem 4.2 and the following

Proposition 5.2. The space M∗(X) with the metric H is isometric to M(X).
Proof. Let F : M∗(X) → M(X) act by the formula F (μ) = μ|B(X). The measure F (μ) coincides

with μ on Borel sets. It follows from the definition of the Lebesgue integral that the integrals
∫

X f dμ and∫

X f dF (μ) coincide at continuous functions. Consequently, F preserves the metric H. Since a regular
Borel outer measure is determined uniquely by its values at Borel sets, the mapping F is injective. For
an arbitrary measure ν ∈M(X) the formula

μ(A) = inf{ν(B) : B ⊃ A, B ∈ B(X)}
defines an outer measure on X. The measure μ is regular Borel, since by construction for every A ⊂ X,
there is a sequence Bn ∈ B(X), n = 1, 2, . . . , such that Bn ⊃ A and |μ(A) − μ(Bn)| < 1/2n, whence
B =

⋂
Bn ∈ B(X), B ⊃ A, and μ(A) = μ(B). The measure μ coincides with ν on Borel sets;

consequently, μ ∈M∗(X) and F (μ) = ν. Thus, F is also surjective and hence a one-to-one mapping. �
In [1] there is an example of construction of measures in Rn invariant under countable systems of

contractions known as IIFS (Infinite Iterated Function Systems) [10]. The following theorem generalizes
this example to the case of a complete metric space.

Theorem 5.3. In a complete metric space (X, ρ), for every countable system S = {Si}i∈N of con-
tractions (Si : X → X and LipSi < 1 for i ∈ N) with fixed points xi and for every probability vec-
tor p = (p1, p2, . . . )

(∑

i∈N pi = 1 and pi ≥ 0 for i ∈ N
)

satisfying the condition
∑

i∈N piρ(x1, xi) < ∞,
there is a unique measure ν ∈M(X) such that

ν(A) =
∞∑

i=1

piνS
−1
i (A) for all ν-measurable A ⊆ X.

Proof. The operator T : M(X) → M(X), T (ν) =
∑∞
i=1 piνS

−1
i , is a contraction in the metric H

of [1; 3, Theorem 5]. By Theorem 4.2, the space M(X) is complete. Applying the Banach Fixed Point
Theorem, we find that there is a unique measure ν ∈M(X) such that T (ν) = ν. �
The measure ν generated by the system S is called an invariant measure. We can take spt ν as a set

invariant under S. Note that the so-constructed sets can be unbounded and thereby noncompact unlike
attractors of iterated function systems. The following example demonstrates also existence of invariant
measures with bounded but not compact supports.

Example 5.1. In the Hilbert space l2 with the Hilbert basis {ei}∞i=1, consider the system S = {Si}∞i=1
of contractions Si(x) =

1
2(x − ei) + ei and the probability vector p =

(
1
2i

)∞
i=1
. The support of the

corresponding invariant measure is bounded (lies in the unit ball) but is not compact, since it contains
{ei} that are fixed points of the mappings {Si}.
The results of the present article were announced in [11, 12].

The author is deeply grateful to his research advisor Professor V. V. Aseev for constant attention
to the work and useful pieces of advice during the preparation of the manuscript. The author is also
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