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ON SELFSIMILAR JORDAN CURVES ON THE PLANE
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Abstract: We study the attractors of a finite system of planar contraction similarities Sj (j = 1, . . . , n)
satisfying the coupling condition: for a set {x0, . . . , xn} of points and a binary vector (s1, . . . , sn), called
the signature, the mapping Sj takes the pair {x0, xn} either into the pair {xj−1, xj} (if sj = 0) or
into the pair {xj , xj−1} (if sj = 1). We describe the situations in which the Jordan property of such
attractor implies that the attractor has bounded turning, i.e., is a quasiconformal image of an interval of
the real axis.
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In this article we study the attractors of a finite system Sj (j = 1, . . . , n) of contraction similarities
of a complete metric space X which satisfy the following coupling condition: for a set {x0, . . . , xn}
of points in X , called vertices, and a binary vector (s1, . . . , sn), called the signature, the mapping Sj

(i = 1, . . . , n) takes the pair {x0, xn} either into the pair {xj−1, xj} (if sj = 0) or into the pair {xj , xj−1}
(if sj = 1). We call such systems of similarities zippers. The basic properties of attractors of systems of
contractions in a complete metric space, including existence and uniqueness theorems for an attractor,
can be found in Hutchinson’s fundamental article [1] or Crownover’s monograph [2]. Some properties
of zippers are described in § 3.5 of [1]. As Example 1.4 shows, the attractor of a zipper may fail to be
a Jordan arc in general. In this article we do not dwell upon sufficient conditions on a zipper to possess
the Jordan property and study the regularity properties of its attractor that follow only from the Jordan
property. In § 4 we describe the situation on the plane in which the attractor of a Jordan zipper is an arc
with bounded turning, i.e., a quasiconformal image of an interval of the real axis. In particular, these
situations are

(1) the case of an alternating signature: sj−1 + sj = 1 for all j = 1, . . . , n;
(2) the case in which s1 + sn ≥ 1;
(3) the case of rational commensurability of the numbers Log(|x1 − x0|/|xn − x0|) and Log(|xn −

xn−1|/|xn − x0|).
In § 2 we construct an example of a Jordan zipper on the plane whose attractor is not an arc with

bounded turning. In Theorem 2.2 we establish that if the attractor of a Jordan zipper has bounded turning
then it is a set of finite nonzero α-dimensional Hausdorff measure, where α is the similarity dimension of
the system S which coincides in this case with the Hausdorff dimension of the attractor. Note that, while
deriving Lemma 1.1 on a continuous structure parametrization of the attractor of a zipper, we cannot
follow the proof of a similar assertion of [1, Theorem (3), p. 731] owing to the presence of an implicit
requirement in [1] that the metric space under consideration is connected.

1. Attractors, zippers, and their parametrizations. A mapping S : (X1, ρ1) → (X2, ρ2)
between metric spaces is a contraction if

Lip(S) := sup{ρ2(S(x), S(y))/ρ1(x, y) : x, y ∈ X1, x 6= y} < 1.

Given a natural n ∈ N, put I = {1, . . . , n}, Ik =
∏k

j=1 I, where k ∈ N, I∗ =
⋃∞

k=1 Ik, and I∞ =
∏∞

j=1 I.
The elements of Ik and I∗ are written down as words of finite length in the alphabet I. The set I∗ of
multi-indices is the free semigroup generated by the elements of I with the concatenation operation, i.e.,
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simply joining one word to the other. The elements of I∞ are written as words of infinite length in the
alphabet I.

For a collection S = {S1, . . . , Sn} of contractions of a complete metric space (X , ρ) into itself and
an arbitrary i = i1 . . . ik ∈ Ik we use the abbreviation Si = Si1...ik = Si1 ◦ · · · ◦ Sik . Given arbitrary
i = i1i2 · · · ∈ I∞ and k ∈ N, we put i|k = i1 . . . ik ∈ Ik. In the space Comp(X ) of all nonempty compact
subsets A ⊂ X with the metric given by the Hausdorff distance [3, Chapter 2, § 21, p. 223], the system S
defines the Hutchinson operator Φ : Comp(X ) → Comp(X ) that takes a nonempty compact set A ⊂ X
into the nonempty compact set Φ(A) =

⋃n
k=1 Sk(A) (see [1] or [2, (4.1), p. 99]). The fixed point of Φ,

i.e., the nonempty compact set K(S) ∈ Comp(X ) satisfying the equality K(S) = Φ(K(S)), is called
the attractor (or invariant set) of S. The formula π(i) = limk→∞ Si|k(x) correctly defines a continuous
mapping π : I∞ → K(S) independent of the choice of x ∈ X (where I∞ is equipped with the Tychonoff
product of discrete topologies) which is called the index parametrization of the attractor K(S) of S
(see [1, (vii), p. 725]). For i ∈ Ik, the subsets Ki(S) := Si(K(S)) of the attractor K(S) are referred to
as copies of rank k. In Thurstone’s terminology (see [4]), a system S = {S1, . . . , Sn} of contractions of
a complete metric space (M , ρ) into itself which satisfies the condition “there is a collection of points
{x0, . . . , xn} ⊂ M and a vector (s1, . . . , sn) ∈ {0, 1}n for which Sj(x0) = xj−1+sj and Sj(xn) = xj−sj for
all j ∈ I” is called a zipper with vertices {x0, . . . , xn} and signature (s1, . . . , sn). The following lemma
generalizes Hutchinson’s assertions [1, § 3.5, pp. 730–731] for zippers with signature sj = 0 for all j ∈ I:

Lemma 1.1. For every zipper S = {S1, . . . , Sn} with vertices {x0, . . . , xn} and signature (s1, . . . , sn)
in a complete metric space (M , ρ) and for every collection of points 0 = t0 < t1 < · · · < tn = 1 on the
interval J = [0, 1] ⊂ R1, there is a unique mapping γ : J → K(S) such that γ(ti) = xi and Si ◦ γ = γ ◦ Ti

for each i ∈ I, where Ti(t) = ti−1(1− t) + tit for si = 0 and Ti(t) = ti−1t + ti(1− t) for si = 1. Moreover,
the mapping γ is Hölder continuous and γ(J) = K(S).

Proof. Let R < 1 be the maximal dilatation of the mappings in S and let r > 0 be the minimal
dilatation of the mappings in T. Put V = V (0) = {x0, . . . , xn}, W = W (0) = {0, t1, . . . , tn−1, 1},
V (k) = Φk(V ), and W (k) = Ψk(W ), where Φ and Ψ are the Hutchinson operators of S and T. The sought
mapping γ is defined uniquely on each finite set W (k): for every multi-index j ∈ Ik, put γ(Tj(0)) = Sj(x0)
and γ(Tj(1)) = Sj(xn). Correctness of the definition of γ is guaranteed by the coincidence of the signatures
of S and T. Thereby γ is defined on the dense set W (∞) =

⋃∞
k=1 W (k) in J . For each δ ∈ (0, r) we have

a number k ≥ 1 such that rk+1 ≤ δ ≤ rk. Since diam(Tj(J)) ≥ rk for all j ∈ Ik, every pair a, b ∈ W (∞)

with distance |a− b| < δ is covered by at most two adjacent (i.e., intersecting) copies of rank k of K(T).
By the construction of γ, the images γ(a) and γ(b) as well lie in the union of at most two intersecting
copies of rank k of K(S). Consequently, ρ(γ(a), γ(b)) ≤ 2Rk diam(V ). Since k + 1 ≥ Log(δ)/ Log(r),
we have Rk ≤ (1/R)δα, where α = Log(R)/ Log(r). Hence, the mapping γ is Hölder continuous with
exponent α = Log(R)/ Log(r) on W (∞) and thereby extends by continuity to J . Moreover,

γ(J) = lim
k→∞

γk(W (k)) = lim
k→∞

V (k) = K(S).

The lemma is proven.
The mappings γ of Lemma 1.1 for various collections of points 0 < t1 < · · · < tn−1 < 1 are called

structure parametrizations of the attractor of S. A zipper S is a Jordan zipper if and only if one (and
hence every) of the structure parametrizations of its attractor establishes a homeomorphism of the interval
J = [0, 1] onto K(S).

Theorem 1.2. Let S = {S1, . . . , Sn} be a zipper with vertices {x0, . . . , xn} in a complete metric
space (M , ρ) such that all contractions Sj : M → M are injective. If for arbitrary i, j ∈ I the set
Ki(S)∩Kj(S) is empty for |i−j| > 1 and is a singleton for |i−j| = 1 then every structure parametrization
γ : [0, 1] → K(S) of K(S) is a homeomorphism and K(S) is a Jordan arc with endpoints x0 and xn.

Proof. Let γ : J → K(S) be the structure parametrization for K(S) constructed in Lemma 1.1.
Consider the system T = {T1, . . . , Tn} as a zipper with the same signature as that of S, the vertices
{0, t1, . . . , tn−1, 1}, and the attractor J = K(T).
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Note that the following condition is satisfied:
(A) If x = γ(a) = γ(b) for a, b ∈ J , a < b, then either
(a1) a, b ∈ Ki(T) for some i ∈ I or
(a2) the relations a ∈ Ki(T) and b ∈ Ki+1(T) hold for some i ∈ I and x = γ(ti).
Indeed, assume that a ∈ Ki(T) and b ∈ Kj(T). Then x ∈ Ki(S) ∩Kj(S) and, by the condition of

the theorem, |i − j| ≤ 1. If i = j then (a1) takes place. If |i − j| = 1 then it follows from a < b that
j = i + 1 and we obtain (a2).

Suppose that the mapping γ is not injective. Then there are points a, b ∈ J , a < b, with γ(a) = γ(b).
Using (A) and replacing b with ti in the case (a2), without loss of generality we may assume that the
original points a and b lie in the same copy Ki(T) of rank 1 and consequently there is q = max{k : ∃j ∈ Ik

such that a, b ∈ Kj(T)} ≥ 1. Suppose that a, b ∈ Kj0(T) for j0 ∈ Iq. Then the points a′ = T−1
j0

(a) and
b′ = T−1

j0
(b) lie in different copies of rank 1 of the attractor J = K(T); moreover, γ(a′) = S−1

j0
◦ γ(a) =

S−1
j0

◦ γ(b) = γ(b′). Consequently, the case (a2) takes place in (A) for the points a0 = min{a′, b′} and
b0 = max{a′, b′}; i.e., a0 ∈ Ki0(T) and b0 ∈ Ki0+1(T) for some i0 ∈ I; moreover, γ(a0) = γ(ti0). Then
the points a′0 = T−1

i0
(a0) and b′0 = T−1

i0
(ti0) = 1− si0 differ and

γ(a′0) = S−1
i0

◦ γ(a0) = S−1
i0

◦ γ(ti0) = γ(1− si0) = x1−si0
.

We thus arrive at the following condition:
(B) If the parametrization γ is not injective then either
(b1) γ(a) = γ(0) = x0 for some a ∈ (0, 1) or
(b2) γ(a) = γ(1) = xn for some a ∈ (0, 1).
Consider the case (b1). Since γ(t1) = x1 6= x0 = γ(0), the case (a2) in (A) is impossible for the

pair 0, a and therefore a ∈ K1(T). Consequently, q = max{k : a ∈ Kj(T), where j = 11 . . . 1 ∈ Ik} ≥ 1.
Let j0 = 11 . . . 1 ∈ Iq. Then the points a0 = T−1

j0
(0) ∈ {0, 1} and a1 = T−1

j0
(a) do not lie in the same

copy of rank 1 of J = K(T), although γ(a0) = γ(a1). Then the case (a2) must take place in (A) for the
points a0 and a1. For a0 = 0 we deduce the following contradiction: x0 = γ(0) = γ(t1) = x1. However,
a0 = 1 leads to the same contradiction: xn = γ(1) = γ(tn−1) = xn−1. Therefore, (b1) is impossible.
Similarly, we establish that (b2) is impossible. Thus, the assumption that γ is not injective leads to
a contradiction. The theorem is proven.

Example 1.3 [1, p. 729]. Considering the complex plane (z), put

z0 = 0, z1 = 1/2 + i/2
√

3, z2 = 1,

S1(z) = (1/
√

3)z̄ exp(iπ/6), S2(z) = 1 + (1/
√

3)(z̄ − 1) exp(−iπ/6).

The system S = {S1, S2} of contraction similarities is a zipper with vertices {z0, z1, z2} and signature
(0, 0), while its attractor K(S) is the classical Koch curve.

Example 1.4. On the complex plane (z), the system Q of the contraction similarities Q1(z) =
(1/2)z, Q2(z) = 1/2 + i

√
3/2 + (1/2)(z − (1 + i

√
3)/2), and Q3(z) = 1 + (1/2)(z − 1) has the attractor

K(Q) = D that is the classical Sierpiński triangle. Put

z0 = 0, z1 =
1 + i

√
3

4
, z2 =

3 + i
√

3
4

, z3 = 1;

S1(z) =
1
2
z̄ exp

(
iπ

3

)
, S2 =

1
2
z +

1 + i
√

3
4

, S3(z) = 1 +
1
2
((̄z)− 1) exp

(
− iπ

3

)
.

The system S = {S1, S2, S3} is a zipper with vertices {z0, z1, z2, z3} and signature (0, 0, 0) and its attrac-
tor K(S) is again the Sierpiński triangle D. This is a consequence of the obvious equalities Sj(D) = Qj(D)
for j = 1, 2, 3, the equality D = S1(D) ∪ S2(D) ∪ S3(D), and uniqueness of the invariant set for S.
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Example 1.5. In the complex plane (z = x + iy), the system S of the mappings S1(x + iy) = xi/2,
S2(x + iy) = (x + i)/2, S3(x + iy) = (1 + x + i)/2, and S4(x + iy) = 1 + (1 − x)i/2 is a zipper with
vertices {0, i/2, (1 + i)/2, 1 + i/2, 1} and signature (0, 0, 0, 0). The attractor K(S) is the union of the
segments [0, i/2], [i/2, 1/2+ i/2], [1/2+ i/2, 1+ i/2], and [1+ i/2, 1] each of which is a corresponding copy
of rank 1. In this example, K(S) is a Jordan arc with endpoints 0 and 1; the copies of rank 1 satisfy the
conditions of Theorem 1.2, but no structure parametrization γ : J → K(S) is a homeomorphism (some
copies of rank 2 are singletons). Consequently, the condition that the contractions Si are injections in
Theorem 1.2 cannot be omitted.

A zipper S = {S1, . . . , Sn} is selfsimilar if the mappings Si : (M , ρ) → (M , ρ) are similarities with
dilatations ri ∈ (0, 1) (i.e., ρ(Si(x), Si(y)) = ri · ρ(x, y) for all x, y ∈ M ). The unique solution α of the
equation rα

1 + · · ·+ rα
n = 1 is called the similarity dimension of S.

2. Jordan zippers with bounded turning. In line with [5, 2.7, p. 100], we introduce the class
c-BT (c ∈ [1,∞)) of metric spaces (M , ρ) with bounded turning defined by the following condition: every
pair a, b ∈ M can be joined by a continuum Γ ⊂ M such that diam(Γ) = supx,y∈Γ ρ(x, y) ≤ cρ(a, b).

Lemma 2.1. Let S = {S1, . . . , Sn} be a selfsimilar Jordan zipper with vertices {x0, . . . , xn} and
signature (s1, . . . , sn) in a complete metric space (M , ρ). The attractor K = K(S) is an arc with bounded
turning (K ∈ c-BT) if and only if the following condition holds at all vertices xi (i = 1, . . . , n− 1):

(U) there is ci ≥ 1 such that the estimate diam(Γxy) ≤ ciρ(x, y) is valid for every Jordan arc Γxy ⊂ K
with endpoints x ∈ Ki(S) and y ∈ Ki+1(S).

Proof. If K(S) ∈ c-BT then (U) obviously holds for every i = 1, . . . , n − 1 with the constant
ci = c. To check the converse implication, put δ = min{ρ(x, y) : x ∈ Ki(S), y ∈ Kj(S); |i − j| > 1} > 0,
d = diam K, c′ = max{c1, . . . , cn}, c′′ = d/δ, and c = max{c′, c′′}. If points a and b lie in different copies
of rank 1 then either diam(Γab) ≤ c′ρ(a, b) (the points lie in adjacent copies of rank 1) or diam(Γab) ≤
d ≤ c′′ρ(a, b) (the points lie in disjoint copies of rank 1). If a and b lie in the same copy of rank 1 then
p = max{k : ∃j ∈ Ik such that a, b ∈ Kj(S)} ≥ 1. Let a, b ∈ Kj(S), j ∈ Ip. Then the points a′ = S−1

j (a)
and b′ = S−1

j (b) lie in different copies of rank 1. Since Sj is a similarity with dilatation rj , from the
preceding estimates we obtain the inequality

diam(Γab) = rj diam(Γa′b′) ≤ rj max{c′, c′′}ρ(a′, b′) = cρ(a, b).

Thus, K ∈ c-BT. The lemma is proven.
Given α > 0, we denote by Hα the conventional α-dimensional Hausdorff measure on the σ-ring of

all Borel sets in Rd and by dimH , the Hausdorff dimension of a Borel set in Rd.

Theorem 2.2. If the attractor K = K(S) of a selfsimilar Jordan zipper S in Rd has bounded
turning and α is the similarity dimension of the system S then 0 < Hα(K) < +∞ and consequently
dimH(K) = α.

Proof. Suppose that S = {S1, . . . , Sn} is a Jordan zipper with vertices {x0, . . . , xn}, the mappings
Si : Rd → Rd are similarities with dilatations ri ∈ (0, 1) (i ∈ I), K ∈ c-BT, and D = diam(K). Assume
that Hα(K) = 0. Then (see [6, p. 996]) the identity mapping id is the limit of some sequence uniformly
convergent (over compact sets in Rd) of the family F of all mappings (similarities) of the form S−1

i ◦ Sj

with multi-indices i = i1 . . . ip ∈ Ip and j = j1 . . . jq ∈ Iq, p, q = 1, 2, . . . , such that i1 6= j1. Put ε = D/c.
Then there exist p ≥ 1, q ≥ 1, and multi-indices i ∈ Ip and j ∈ Iq with i1 6= j1 for which

max
{∣∣x0 − S−1

i ◦ Sj(x0)
∣∣, ∣∣xn − S−1

i ◦ Sj(xn)
∣∣} < ε.

Since Si is a similarity with dilatation ri = ri1ri2 . . . rip , we have

max{|Si(x0)− Sj(x0)|, |Si(xn)− Sj(xn)|} < riε.
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The points Si(x0), Si(xn) ∈ Ki1 are the endpoints of the Jordan arc Ki(S) which is a copy of rank p, and
the points Sj(x0), Sj(xn) ∈ Kj1 are the endpoints of the Jordan arc Kj(S) which is a copy of rank q. It
follows from the location of these arcs on K that

max{diam(ΓSi(x0),Sj(x0)),diam(ΓSi(xn),Sj(xn))} ≥ diam(Ki) = riD.

Since K ∈ c-BT, we obtain the inequality

riD ≤ cmax{|Si(x0)− Sj(x0)|, |Si(xn)− Sj(xn)|} < criε,

which leads to the following contradiction: D < cε = D. The theorem is proven.
Example 2.3. We show that in the plane (z = x + iy) there is a selfsimilar Jordan zipper S whose

attractor K = K(S) is not an arc with bounded turning. Note that, for arbitrary rational numbers d1,
d2 6= 0 and a natural n ≥ 1, the number (d1 + d2

√
5)n is irrational. (If (d1 + d2

√
5)n = A + B

√
5 with

rational A and B then the Newton binomial formula yields the relation 0 6= (d1+d2

√
5)n−(d1−d2

√
5)n =

2B
√

5 which means that B 6= 0.) In particular, for τ = (
√

5 − 1)/2 ∈ (0, 1) the numbers τn with n ≥ 1
cannot be integer powers of 2 and consequently the numbers log2(τ) ∈ (−1, 0) and log2(τ2/2) ∈ (−3,−1)
are irrational.

Construct the zipper S = {S1, . . . , S4} with vertices z0 = −τ , z1 = 0, z2 = (1 + i
√

3)/2, z3 = 1,
and z4 = 2 + τ and signature (0, 0, 0, 0) which is generated by the similarities Sj with dilatations r1 =
τ/(2+2τ) = τ2/2, r2 = r3 = 1/(2+2τ) = τ/2, and r4 = 1/2 such that S1 and S4 preserve the orientation
of the plane, whereas S2 and S3 change. The triangles z0z1z2 and z2z3z4 are similar (for τ/1 = 1/(1+τ)).
Denoting the angle at the vertex z0 by β0 and denoting the angle of the vertex z4 by β1, we observe that
β0 +β1 = π/3, the angle z0z2z1 equals β1, and the angle z3z2z4 equals β0. Taking the domain U to be the
open triangle with vertices z0, z2, and z4, we see that Si(U) ∩ Sj(U) = ∅ for i 6= j and consequently the
selfsimilar zipper S satisfies the open set condition (OSC) (see [1, (1), p. 735]) which is equivalent (see [7,
Theorem 2.2, p. 114]) to the fact that the Hausdorff dimension dimH(K) of the attractor K = K(S)
coincides with the similarity dimension α of the system S and the α-dimensional Hausdorff measure
satisfies the inequality 0 < H α(K) < +∞ (see also [8, Theorem 3, p. 7]). Since Kj = Sj(K) ⊂ Sj(U)
for j = 1, . . . , 4, K1 meets only the copy K2 at the point z1; K4 meets only the copy K3 at the point z3,
and the copies K2 and K3 may meet only at points of the interval L = [z2z5], where the point z5 on the
interval [z1z3] is such that the angle z1z2z5 equals β1 and the angle z5z2z3 equals β0. Then

K2 ∩ L = {z2} ∪
{
an = S2

(
Sn

4 (z2)
)

: n = 0, 1, . . .
}
,

K3 ∩ L = {z2} ∪
{
bn = S3

(
Sn

1 (z2)
)

: n = 0, 1, . . .
}
,

ρn = |an − z2| =
∣∣S2

(
Sn

4 (z2)
)
− S2(z4)

∣∣ = r2r
n
4 |z2 − z4| =

√
2/2n+1,

σm = |bm − z2| =
∣∣S3

(
Sm

1 (z0)
)
− S3(z0)

∣∣ = r3r
m
1 |z2 − z0| =

√
2(τ2/2)mτ/2.

Therefore, the equality an = bm holds only if τ2m+1 = 2m−n which is impossible for integers m and n.
Consequently, the copies K2 and K3 meet only at the point z2 and therefore S is a Jordan zipper.

Since log2(τ2/2) is irrational, the set of fractional parts of all numbers of the form m log2(τ2/2) for
m = 1, 2, . . . is dense in the interval [0, 1]. Therefore, for every ε ∈ (0, 1), there are naturals m and n for
which |(m log2(τ2/2) + n)− (− log2 τ)| ≤ log2(1 + ε). Since

| log2(σm/ρn)| = | log2[(τ
2/2)mτ2n]| = |m log2(τ

2/2) + n + log2 τ | ≤ log2(1 + ε),

we have (1 + ε)−1 ≤ σm/ρn ≤ 1 + ε. Then the inequality |an − bm|/(ρn + σm) = |σm − ρn|/(σm + ρn) ≤ ε
holds for the arc γ ⊂ K(S) with endpoints an and bm. This implies that

diam(γ) ≥ max{σm, ρn} ≥ (σm + ρn)/2 ≥ |an − bm|/2ε.

Since ε is arbitrarily small, this means, however, that the arc K(S) does not belong to the class c-BT for
any c < ∞.

3. Vertices of the first and second types. Observe one geometric property of periodic Jordan
arcs on the complex plane C which is expressed by the following lemma:
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Lemma 3.1 (on disjoint periodic arcs). Suppose that Jordan arcs Γ1 and Γ2 on C with the common
beginning 0 and endpoints a1 and a2 are disjoint in C\{0}. If the similarities Fj(z) = Cjz with |Cj | =
ρj < 1 are such that Fj(Γj) ⊂ Γj (j = 1, 2) then

α1/ Log(ρ1) = α2/ Log(ρ2), (1)

where αj is the increment of the argument z along the arc τj ⊂ Γj with endpoints aj and Fj(aj) in the
direction from aj to Fj(aj). (Note that, with these notations, Cj = ρje

iαj and αj = Im (
∫
τj

z−1dz)),
where the integral along a Jordan arc is well defined (see, for example, [9, Remark 1, p. 78])).

Proof. Proving (1), without loss of generality we may replace the original arcs Γj with their subarcs
in some closed disk B(0, R0) with the common beginning 0 and endpoints a′j ∈ ∂B(0, R0). Therefore, we
can assume that |aj | = R0 and Γj ⊂ B(0, R0).

Consider z = exp(w) of the plane (w = p+iϕ) as a universal covering map of C\{0} (see, for example,
[10, Chapter 1, § 5]). Moreover, all γj of the Jordan arcs Γj satisfy the conditions Tj(γj) ⊂ γj for the
translation Tj(w) = w + Log(ρj) + iαj (j = 1, 2) and γ1 ∩ γ2 = ∅. Assume that k1 = α1/ Log(ρ1) 6=
k2 = α2/ Log(ρ2). Without loss of generality we consider k1 < k2. Fix some lift γ1 of Γ1 that is
a Jordan arc with beginning W0 = p0 + iϕ0 (where exp(W0) = a1) in the half-plane {p ≤ p0 = Log(R0)},
passing through the point Tn

1 (W0) = p0 + n Log(ρ1) + i(ϕ0 + nα1), n = 0, 1, . . . . By periodicity (with
period Log(ρ1) + iα1), the arc γ1 lies in some half-strip

Π = {w = p + iϕ : −∞ < p ≤ p0, |ϕ− ϕ0 − k1(p− p0)| < M}.

Fix some lift γ2 of Γ2 with beginning W ′
0 = p0 + iϕ′0, exp(W ′

0) = a2, and take a natural N such that
ϕ′0 + 2πN > ϕ0 + M . Then the lift γ′2 = {w + 2πNi : w ∈ γ2} of Γ2 passes through the set{

Tn
2 (W ′

0) = p0 + n Log(ρ2) + i(ϕ′0 + 2πN + nα2);n = 0, 1, . . .
}

of points of the straight line with slope k2. The point W ′
0 + 2πNi lies above the half-strip Π and, since

k2 > k1, the points Tn
2 (W ′

0) lie below Π for all sufficiently large n. Consequently, the arc γ′2 intersects Π
and hence γ1. The lifts of Γ1 cannot meet the lifts of Γ2. This contradiction shows that k1 = k2. The
lemma is proven.

Given a selfsimilar Jordan zipper S = {S1, . . . , Sn} with vertices x0, . . . , xn and signature (s1, . . . , sn)
on the plane R2, we say that a vertex xp (p ∈ {1, . . . , n− 1}) is a vertex of the first type if sp = sp+1 and
s1 = sn = 0; otherwise xp is a vertex of the second type.

Lemma 3.2. Let xp, p = 1, . . . , n − 1, be a vertex of a selfsimilar Jordan zipper S = {S1, . . . , Sn}
with signature (s1, . . . , sn). Suppose that

(i) xp is a vertex of the second type or
(ii) xp is a vertex of the first type and the number

Log |x1 − x0| − Log |xn − x0|
Log |xn − xn−1| − Log |xn − x0|

(2)

is rational.
Then the condition (U) of Lemma 2.1 holds for the vertex xp.

Proof. Let xq = S−1
p (xp) and xq′ = S−1

p+1(xp), where q, q′ ∈ {0, n}. Let w,w′ ∈ I∞ be the index
coordinates of xq and xq′ ; i.e., xq = π(w) and xq′ = π(w′), where π : I∞ → K = K(S) is the index
parametrization of the attractor K. The following relations are immediate:

For sp = sp+1 the equality q′ = n− q holds and
(A1) w = 111 . . . and w′ = nnn . . . for q = 0, s1 = 0, and sn = 0;
(A2) w = 111 . . . and w′ = n111 . . . for q = 0, s1 = 0, and sn = 1;
(A3) w = 1nnn . . . and w′ = nnn . . . for q = 0, s1 = 1, and sn = 0;
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(A4) w = 1n1n . . . 1n . . . and w′ = n1n1 . . . n1 . . . for q = 0, s1 = 1, and sn = 1;
(A5) w = nnn . . . and w′ = 111 . . . for q = n, s1 = 0, and sn = 0;
(A6) w = n111 . . . and w′ = 111 . . . for q = n, s1 = 0, and sn = 1;
(A7) w = nnn . . . and w′ = 1nnn . . . for q = n, s1 = 1, and sn = 0;
(A8) w = n1n1 . . . n1 . . . and w′ = 1n1n . . . 1n . . . for q = n, s1 = 1, and sn = 1.
For sp 6= sp+1 the equality q′ = q holds and
(B1) w = w′ = 111 . . . for q = 0, s1 = 0, and every sn;
(B2) w = w′ = 1nnn . . . for q = 0, s1 = 1, and sn = 0;
(B3) w = w′ = 1n1n1n . . . for q = 0, s1 = 1, and sn = 1;
(B4) w = w′ = nnn . . . for q = n, sn = 0, and every s1;
(B5) w = w′ = n111 . . . for q = n, sn = 1, and s1 = 0;
(B6) w = w′ = n1n1n1 . . . for q = n, sn = 1, and s1 = 1.
Note that in each case we can rewrite the multi-indices w and w′ as w = abbb . . . and w′ = a′b′b′b′ . . . ,

where (A2) a = 1, a′ = n, and b = b′ = 11; (A3) a = 1, a′ = n, and b = b′ = nn; (A4) a = 1, a′ = n,
b = n1n1, and b′ = 1n1n; (A6) a = n, a′ = 1, and b = b′ = 11; (A7) a = n, a′ = 1, and b = b′ = nn;
(A8) a = n, a′ = 1, b = 1n1n, and b′ = n1n1; (B1) a = a′ = 1 and b = b′ = 11; (B2) a = a′ = 1 and
b = b′ = nn; (B3) a = a′ = 1 and b = b′ = n1n1; (B4) a = a′ = n and b = b′ = nn; (B5) a = a′ = n
and b = b′ = 11; (B6) a = a′ = n and b = b′ = 1n1n. In the cases (A1) and (A5), by rationality of (2),
there are coprime naturals P and Q for which the dilatations r1 and rn of the similarities S1 and Sn are
connected by the equality rQ

1 = rP
n . Put (A1) a = 1, a′ = n, b = 1 . . . 1 ∈ I2Q, and b′ = n . . . n ∈ I2P ;

(A5) a = n, a′ = 1, b = n . . . n ∈ I2P , and b′ = 1 . . . 1 ∈ I2Q. Observe that the similarities Sb and S′b in all
cases preserve orientation, have the respective fixed points S−1

a (xq) and S−1
a′ (xq′), and their dilatations rb

and rb′ coincide, rb = rb′ .
The Jordan arc τ = Spa(K) ⊂ Sp(K) = Kp has the endpoint xp, and the orientation-preserving

similarity A = Sp ◦Sa ◦Sb ◦S−1
a ◦S−1

p with dilatation rb and fixed point xp is such that A(τ) = (A ◦Sp ◦
Sa)(K) = Spa(Sb(K)) ⊂ Spa(K) = τ . By analogy, the Jordan arc τ ′ = S(p+1)a′(K) ⊂ Sp+1(K) = Kp+1

has the endpoint xp, and the orientation-preserving similarity A′ = Sp+1 ◦ Sa′ ◦ Sb′ ◦ S−1
a′ ◦ S−1

p+1 with
dilatation rb′ and fixed point xp is such that A′(τ ′) ⊂ τ ′. Since the zipper is Jordan, τ ∩ τ ′ = {xp} and
therefore Lemma 3.1 applies to the arcs τ and τ ′ and the corresponding similarities A and A′. Since
A = rbe

iα and A′ = rbe
iα′

, from equality (1) of Lemma 3.1 we infer the equality α = α′(mod 2π) and the
coincidence of these similarities, A′ = A.

Suppose that D = diam(K), δ = inf{|x − y| : (x ∈ Kp\A(τ), y ∈ Kp+1) or (x ∈ Kp, y ∈
Kp+1\A′(τ ′))}, and r is the maximal dilatation of the similarities S1, . . . , Sn. For an arbitrary pair
x ∈ Kp, y ∈ Kp+1 of points at least one of which differs from xp, find a minimal number k ≥ 1 such that
x 6∈ Ak(τ) or y 6∈ Ak(τ ′). If k = 1 then x ∈ Kp\A(τ) or y ∈ Kp+1\A(τ ′), and in this case |x− y| ≥ δ. We
have the following estimate for the diameter of the arc Γxy ⊂ Kp ∩Kp+1:

diam(Γxy) ≤ diam(Kp) + diam(Kp+1) ≤ 2rD ≤ 2rDδ−1|x− y|. (3)

If k > 1 then x ∈ Ak−1(τ) and y ∈ Ak−1(τ ′); moreover, x 6∈ Ak(τ) or y 6∈ Ak(τ ′). Then x̃ = A1−k(x) ∈ τ
and ỹ = A1−k(y) ∈ τ ′; moreover, x̃ 6∈ A(τ) or ỹ 6∈ A(τ ′). Recalling that Γxy = Ak−1(Γx̃ỹ), we obtain the
equalities

diam(Γxy) = rk−1
b diam(Γx̃ỹ), |x̃− ỹ| = |A1−k(x)−A1−k(y)| = r1−k

b |x− y|.

Using them in estimate (3) for the pair x̃, ỹ, we arrive at the relation

diam(Γxy) ≤ 2rDδ−1|x− y|.

We have thus demonstrated that the vertex xp satisfies the condition (U) of Lemma 2.1 with the con-
stant cp = 2rDδ−1. The lemma is proven.
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Example 2.3 demonstrates that the rationality of (2) is essential in the case of vertices of the first
type.

4. Basic theorems on selfsimilar Jordan zippers. The theorems of this section are immediate
from applying Lemmas 2.1 and 3.2 to some particular cases important in applications.

Theorem 4.1. Let S = {S1, . . . , Sn} be a selfsimilar Jordan zipper with vertices z0, . . . , zn on the
plane R2. If the number

Log |z1 − z0| − Log |zn − z0|
Log |zn − zn−1| − Log |zn − z0|

is rational then the attractor K = K(S) has bounded turning.

Theorem 4.2. If a selfsimilar Jordan zipper S on the plane R2 has no vertices of the first type then
its attractor K = K(S) is an arc with bounded turning.

The following two assertions are particular instances of Theorem 4.2:

Theorem 4.3. If a selfsimilar Jordan zipper S = {S1, . . . , Sn} on the plane has signature (s1, . . . , sn)
such that s1 + sn ≥ 1 then its attractor is an arc with bounded turning.

Theorem 4.4. If a selfsimilar Jordan zipper S = {S1, . . . , Sn} on the plane R2 has an alternating
signature; i.e., sp 6= sp+1 for all p = 1, . . . , n− 1, then its attractor is an arc with bounded turning.

Remark 1. In the scheme behind the construction of a zipper with alternating signature, we could
see a two-dimensional generalization of the inverse refrain scheme which was suggested by P. Tukia in [11,
p. 154] as a modification of Salem’s construction and which was used by P. Tukia for constructing special
quasisymmetric homeomorphisms of an interval onto itself.

Remark 2. Theorems 4.1–4.4 do not exhaust all cases in which the attractor of a Jordan zipper on
the plane has bounded turning, since this property can result from a suitable disposition of vertices (for
example, when all vertices lie on one straight line and the attractor is an interval).

The above results were partly announced in [12, 13]. The authors are grateful to the referee for
his/her remarks that led to an essential improvement of this article.
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